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ABSTRACT

Spurious long-distance correlations in estimates of the background error covariance can deteriorate the

performance of ensemble-based data assimilation methods. In this study, a localizationmethod, calledMonte

Carlo (MC) localization, is presented to remove these correlations. It is particularly useful for use in high-

dimensional ensemble–variational data assimilation systems. In this method, raw ensemble members are

truncated by multiplying them with functions having compact support. This creates a larger ensemble, in

which points spaced farther apart than the size of the compact support have zero correlation. The localized

background error covariance is then estimated as the sample covariance of this larger ensemble. It is hy-

pothesized that this localized background error covariance can be approximated by the MC approximation

method using a limited set of the truncated ensemble members. This hypothesis is tested here on a grid with

1001 grid points and assuming aGaussian true background error covariance. It is found that the mean relative

error has an upper bound that scales with the inverse square root of the number of truncated ensemble

members. In the case studied the size of the support for which the localized background covariance best

approximates the true background covariance increases with increasing number of raw ensemble members

and is close to 4 times the standard deviation of the Gaussian when 20 raw ensemblemembers are used. In the

Fourier space the localization manifests itself as a convolution resulting in smoothing of the power spectral

density of the ensemble members.

1. Introduction

Operational implementations of four-dimensional

variational data assimilation (4DVAR) in ocean

models (Kurapov et al. 2011; Moore et al. 2011; Yu et al.

2012; Ngodock and Carrier 2014) require estimation of

the covariance of the errors in the initial conditions

prior to assimilation, or the background error co-

variance. The operational model that motivated our

study is the Oregon–Washington coastal forecasting

system (Oregon State University 2017). The configu-

ration of this model is similar to that described in Kim

et al. (2014). Its domain is approximately 400 km by

800 km with a 2-km resolution in the horizontal and 40

terrain-following layers in the vertical. Its total di-

mensionality is of O(107). The model assimilates sea

surface temperature, altimeter sea surface height, and

daily averaged surface current observations from

high-frequency radars and uses a static background

covariance (Kurapov et al. 2011). However, the back-

ground error statistics are expected to vary in space and

time as result of changing environmental conditions

and, in particular, because of the presence the Co-

lumbia River plume (Liu et al. 2009). To capture this

variability, the background error covariance can be

estimated from an ensemble of model runs.

A well-known problem with the estimation of the

covariance from a limited number of ensemblemembers

is the presence of spurious long-tail correlations that are

detrimental to data assimilation performance (Hamill

et al. 2001; Houtekamer and Mitchell 2001). To remove

these correlations, various localization schemes have

been proposed.

Many known localization schemes multiply the sam-

ple covariance on an element-by-element basis with a

localized correlation matrix C (i.e., they use the Schur

product). It is often assumed that correlations in C de-

crease with physical distance. In particular, piecewise

rational functions with compact support (Gaspari and

Cohn 1999) can be used to obtain sparseC (Houtekamer

and Mitchell 2001; Buehner et al. 2010; Clayton et al.
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2013). Alternatively, ensemble members can be pro-

jected on a complete set of basis functions in spectral

space, followed by localization of the correlation be-

tween the projection coefficients. A variety of choices

for functions and localizations have been used. For

example, in Derber and Bouttier (1999) and Berre

(2000) horizontal Fourier basis functions are used and

localization is performed by setting correlations be-

tween basis functions with different wavenumbers to

zero. Buehner and Charron (2007) also localize in a

spectral space spanned by the Fourier basis. However,

they replace the Schur product in spectral space with

convolution of the ensemble members with Gaspari

and Cohn (1999) compact piecewise rational functions

in physical space. In Deckmyn and Berre (2005), two-

dimensional (2D) Meyer wavelets are used as basis

functions and the coefficients associated with different

wavelets are set to zero. Combinations of the two

aforementioned approaches have also been used:

Buehner (2012) and Buehner and Shlyaeva (2015)

bandpass filter the ensemble members and then apply

spatial localization to each of the bandpass-filtered

ensemble members using different localization scales

for different bands. The disadvantage of these tech-

niques is that they are nonadaptive: the matrix C does

not depend on the model state. To overcome this dis-

advantage, Bishop and Hodyss (2007, 2009a,b) con-

structed C from the ensemble sample correlation by

repeatedly taking the Schur product with itself. This

reduces weak correlations stronger than strong corre-

lations. To correct for the decrease of the strong cor-

relations the result is smoothened. This adaptive

method can be combined with the aforementioned

nonadaptive methods (Bishop and Hodyss 2011).

Anderson (2007, 2012) takes a different approach that

does not require the construction of a localized corre-

lation matrix C. Instead the data assimilative correc-

tion created by each observation is adjusted for

sampling errors stemming from the use of an ensemble

of limited size.

Not all of these localization schemes are suitable for

implementation in our operational model. Trans-

formation of ensemble members to/from spectral

space is problematic near the irregularly shaped coast.

For other schemes mentioned above implementation

in an ensemble–variational model would be compu-

tationally expensive as they require the calculation of

matrix–matrix products with matrices of dimension-

ality ofO(107) (Bishop and Hodyss 2009a), require the

increase of the ensemble size (Anderson 2007), or

application of 4DVAR to each of the O(104) obser-

vations separately (Anderson 2007, 2012). For effi-

cient implementation of nonadaptive localization in

ensemble covariances in three-dimensional (3D) and 4D

variational data assimilation schemes, Bishop et al.

(2011) proposed (i) to perform the localization on a

coarser grid, (ii) to use a localized correlation matrix

in which the elements of the square root C1/2 are

separable functions of horizontal and vertical co-

ordinates, and (iii) assume that C1/2 is independent of

the model variable localized. However, construction

of C1/2 or the use of Gaspari and Cohn (1999) was

found to be time consuming using computer resources

available to us.

To reduce the time and computational cost involved

in localization compared to Gaspari and Cohn (1999)

and Bishop et al. (2011), we have constructed an alter-

native localization method, called Monte Carlo (MC)

localization. This alternative method is described in

detail in section 2. In section 3 the computational cost of

this method for a generic 3D model is compared to that

of Bishop et al. (2011) and a method that uses C con-

structed using the piecewise fifth-order rational function

from Gaspari and Cohn (1999). In section 4 we will look

how well MC localization approximates the true back-

ground error covariance in a one-dimensional (1D) case

with a Gaussian true covariance. Section 5 gives an

example of MC localization implemented in a 3D

oceanographic model. Section 6 discusses some of the

drawbacks of MC localization and possible directions

for improvement and contains a summary of our

findings.

2. Method

In this paper we will assume that localization is ap-

plied in a finite-difference model on a structured grid

with Nx, Ny, Nz grid points in three directions (x, y, z),

respectively, that the spacing in each direction is

equidistant, and that Nr quantities are defined at each

grid point. In this case the model state can be ordered

as a vector of dimension N5NxNyNzNr. The support

of a model state vector is defined as the set of grid

points on which the elements in the vector can be

nonzero.

By definition a correlation matrix C must be sym-

metric, nonnegative definite, and its diagonal elements

must be equal to 1. The first two requirements can be

met by defining C as the sum of symmetric rank-1

matrices:

C5 �
m2M

(x(m)+g)(x(m)+g)T . (1)

Here + denotes the element-by-element multiplication

of the Schur product, T is the matrix transpose, x(m) are
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vectors of dimension N, while the indices m are ele-

ments of some countable set M � N of size M (i.e.,

m5 1, 2, . . . , M). For the moment we only require the

vectors x(m) to be unique, but in the following x(m) will

be narrowed down to a specific class of vectors. Here g

is a N-dimensional normalization vector that ensures

that C has ones on its main diagonal. To achieve this, its

elements must satisfy the following:

g
p
5

�
�

m2M
(x(m)

p )2
�21/2

. (2)

To make C a localization matrix, we add the re-

quirement that Cpq 5 0 if d( p, q), the distance between

points p and q in the metric d, is larger than a given lo-

calization distance. The distance between grid points p

and q will be less than or equal to this localization dis-

tance if and only if there is a metric ball that has the

localization distance as its diameter and contains both

points p and q. So, to satisfy the localization re-

quirement, x(m) must be a vector with its support in one

of these balls.

Let fx(k)gk, with k5 1, 2, . . . , K, be an ensemble

of N-dimensional model state vectors and let x 5
1/K�K

k51x
(k) be the ensemble mean. Then the raw,

nonlocalized, ensemble sample covariance is

B
ens

5
1

K2 1
�
K

k51

(x(k)2x)(x(k)2x)T . (3)

Using the square root theorem [Bishop and Hodyss

(2009b), their Eq. (1)] the localized estimate Bens+C for

the background error covariance can be written as

B5B
ens

+C

5
1

K2 1
�
K

k51
�

m2M
[(x(k)2x)+x(m)+g][(x(k)2x)+x(m)+g]T.

(4)

This is an N3N-dimensional matrix of rank M(K2 1).

Since (4) has the same structure as (3), theN-dimensional

vectors (x(k)2x)+x(m)+g will be referred to as modulated

ensemble members (Bishop and Hodyss 2011).

From now on we limit ourselves to x(m) that are step

functions on some ball. In particular, if Lx, Ly, Lz are

the localization distances in the x, y, z directions, re-

spectively, we define x(m) as an N-dimensional vector

with elements (x(m))p 5 1 if L21
x jxp 2 xmj, 1/2, L21

y j
yp 2 ymj, 1/2, L21

z jzp 2 zmj, 1/2 and zero otherwise. In

this way each grid point gives rise to one unique vector

x(m) and henceM5NxNyNz for this case. From here on

we will refer to the B constructed with all KM vectors

[(x(k)2x)+x(m)+g] as Bfull.

An example of how a modulated ensemble can be

constructed using this choice of vectors x(m) is shown in

Fig. 1. In this example there is only 1 model quantity, the

model grid has only 1 spatial dimension, and it has 501

points with a grid spacing of 1 (N5Nx 5 501). The

compact support has a width of LMC 5 51 grid points.

For two points that are farther than LMC apart (e.g.,

point 340 and point 430), it is impossible to find a x(m) in

which both these points are nonzero. Consequently, a

modulated ensemble member in which these points are

both nonzero does not exist and hence (Bfull)340,4305 0 in

this case.

The modulated ensemble is a factor NxNyNz larger

than the raw ensemble. For our oceanographic model

FIG. 1. 1D example showing the construction of the modulated

ensemble members for the case LMC 5 51 on a 501 point grid.

(a) Two raw ensemble members x(1)2x (solid) and x(2)2x

(dashed). (b) Vectors x(85) (dark blue), x(253) (green), x(317)

(red), and x(432) (light blue). (c) The modulated ensemble

members (x(1)2x)+x(85)+g (dark blue), (x(2)2x)+x(253)+g (green),

(x(1)2x)+x(317)+g (red), and (x(2)2x)+x(432)+g (light blue).
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NxNyNz ’O(107) and K5 50 such that calculation of

Bfull is considerably more computationally intensive

than that ofBens. To speed up calculation of the localized

ensemble covariance, we propose replacing (4) with its

Monte Carlo (MC) approximation:

B
MC

5
1

K2 1
�
K

k51
�

m2Mk

[(x(k)2x)+x(m)+g][(x(k)2x)+x(m)+g]T,

(5)

where Mk is a randomly drawn subset of M 5
f1, 2, . . . , NxNyNzg of size MMC and where Mp can

be different fromMq if p 6¼ q. So, in this approximation

B is constructed from KMMC modulated ensemble

members. The elements of g must be given by

g
p
5

"
1

K
�
K

k51
�

m2Mk

(x(m)
p )2

#21/2
(6)

to ensure that (4) and (5) are the same if no MC ap-

proximation is used (i.e., if Mk 5M for all k).

3. Computational cost

In 4DVAR the matrix B is never explicitly calculated,

but always appears in the form of a matrix–vector prod-

uct. Here we will compare the computational complexity

of the matrix–vector computation with the localized

background error covariance matrix for three different

methods: (i) localization with C constructed using

Gaspari and Cohn (1999) fifth-order rational functions

followed by a standard matrix–vector multiplication,

(ii) localization using Bishop et al. (2011) methodology

assuming C1/2 is readily available, and (iii) MC localiza-

tion as described above. As in section 2 we assume that

localization is applied in a finite-difference model with a

structured grid that has Nx points in the horizontal x di-

rection,Ny in the horizontal y direction,Nz in the vertical

z direction, and that Nr quantities are defined at

each grid point, giving the model a total di-

mensionality of N5NxNyNzNr. In all three cases an

arbitraryN-dimensional vector used in the calculation of

thematrix–vector product is denoted as v. The number of

raw ensemble members is K. The O(Z) notation is used

to indicate that the number of computational operations

(addition, multiplication, exponentiation, etc.) is smaller

than cZ as Z/‘, where c. 0 is a scalar.

The calculation of the ensemble mean x and the de-

viations of the ensemble members from the ensemble

mean requires O(KN) operations in all considered

methods. When using Gaspari and Cohn (1999), it is con-

venient to rewrite the N-dimensional vector (Bens+C)v as

1

K2 1
�
K

k51

(x(k)2x)+(C[(x(k)2x)+v]) . (7)

The calculation of each of the two N-dimensional Schur

products in (7) requires O(N) operations per ensemble

member. Calculation of the inner product of the ith row

of the sparseN3NmatrixCwith (x(k)2x)+v requiresLG

operations, whereLG is the number of grid points that lie

in the compact support of the fifth-order rational func-

tion. The summation of the N-dimensional terms in (7)

requires an additional O(KN) operations. In total, we

find that the direct implementation of (7) requires

O(KN)1O(KN)1O(KNL
G
)1O(KN);O(KNL

G
)

(8)

operations.

Bishop et al. (2011) describe an efficient method for

ensemble covariance localization when C1/2 is readily

available and each element is the product of one of Mh

horizontal basis functions with one of Mz vertical basis

functions. First, the N-dimensional vector (x(k)2x)+v
needs to be calculated at the expense ofO(N) operations

per ensemble member. Next, the different quantities are

summed [O(N) computations per ensemble member]

followed by the calculation of the inner product of the

resulting N-dimensional vector with each vertical basis

function [O(NxNyNzMz) operations], producing an

NxNy 3Mz matrix. Then the inner-product of each col-

umn of this matrix with the horizontal basis functions is

obtained [O(NxNyMzMh) operations], resulting in a

vector of size MhMz. Subsequently, the transpose of the

aforementioned operations is applied in reverse order.

Finally, theKN-dimensional vectors obtained in this way

are summed together at the expense of O(KN) opera-

tions. In total this will require

O(KN)1 2K[O(N)1O(N)1O(N
x
N

y
N

z
M

z
)

1O(N
x
N

y
M

z
M

h
)];O

"
KN

M
z

N
r

max

 
1,
M

h

N
z

!#

(9)

operations.

For MC localization we first need to calculate the

N-dimensional vector g at the expense ofO(KMMCLMC)

operations, where LMC is the number of grid points in

the support of one of the vectors x(m). Calculation of the

N-dimensional vectors (x(k)2x)+g and (x(k)2x)+g+v re-

quires an additional O(N) operation for each ensemble

member. The computation of BMCv is then completed by

selecting MMC pieces from each of these vectors, with
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each piece containing LMCNr elements, and adding these

parts together. This requires O(KMMCLMCNr) opera-

tions. Hence, the total number of operations required is

O(KN)1O(KM
MC

L
MC

)1O(KN)1O(KM
MC

L
MC

N
r
)

;O

"
KNmax

 
1,
M

MC
L

MC

N
x
N

y
N

z

!#
.

(10)

A comparison of (8) and (10) shows that MC localization

is less computationally intensive than Gaspari and Cohn

(1999) if MMCLMC/NxNyNzLG , 1. So, if the compact

supports are of comparable size in the two methods

(LMC ’LG) and if the size of Mk is chosen to be smaller

than the number of grid points, MC localization is compu-

tationally more efficient than using C generated with

Gaspari andCohn (1999).Comparison of (9) and (10) shows

that MC localization is computationally more efficient than

Bishop et al. (2011) if MMCLMCNr/MzMhNxNy , 1. No

general statement can be made whether this inequality is

indeed satisfied, as Mz, Mh, MMC, and LMC will vary de-

pending on C1/2 used and the number of modulated en-

semblemembers in theMCapproximation, but choices for

which the inequality is satisfied do exist. For example, if

the case in which no MC approximation is used

(MMC 5NxNyNz) is compared with a case in which lo-

calization takes place in spectral space (MhMz 5NxNyNz)

as is done, for example, in Gauthier et al. (1998) and Kuhl

et al. (2013) for the horizontal directions, the ratio of the

operation counts between MC localization and Bishop

et al. (2011) is LMCNr/NxNy, which is smaller than 1 if the

horizontal (vertical) localization scale ismuch smaller than

the horizontal (vertical) extent of the model.

4. MC localization in a 1D model

In a strong-constraint 4DVAR system where only the

initial conditions are corrected, the data assimilation

correction at time t0 is found by minimizing the follow-

ing cost function:

J5
1

2
dx(t

0
)TB21dx(t

0
)

1
1

2
[d2HMdx(t

0
)]TR21[d2HMdx(t

0
)] (11)

(Bennett 1992; Courtier et al. 1994), where the column

vector dx(t0) is the correction to the modeled ocean state,

B is the localized background error covariance in the

initial conditions,R is the observational error covariance,d

is the innovation vector (difference between observations

made during a time window [t0, t1] and prior model pre-

dictions for these observations), H is the linear operator

that samples the model result between [t0, t1] and gener-

ates model predictions for the observations, M is the

tangent linear model operator that takes the model per-

turbation at t5 t0 as input and outputs model results for

the period [t0, t1] using a linearized version of the model

equations, and MT is its adjoint. Repeated minimizations

of (11) with updated linearizationsM and initial conditions

are necessary if one wants to account for nonlinearities in

the model. Here J obtains its minimum for

dx(t
0
)5BMTHT(HMBMTHT 1R)21d (12)

(Courtier 1997). From (12) it follows that when B is con-

structed using (4) or (5), the model correction dx(t0) is a

weighted combination of the modulated ensemble members

(x(k)2x)+x(m)+g. In this section we will (i) investigate how

wellBMC approximatesBfull asMMC, thenumberof elements

in the set Mk, changes, and (ii) analyze the power spectral

density of the modulated ensemble members. All experi-

ments in this section use a 1D grid withN5 1001 grid points

and one unitless variable to denote the position in space.

Wedraw the ensemblemembers x(k) for this 1Dmodel by

first constructing the Fourier transform, then applying an

inverse Fourier transform to it giving a function x(k), and

finally evaluating this function at the gridpoints. TheFourier

transform for ensemble member k is created as follows:

F x(k)(k)

5 �
N

1/2

l52N
1/2

A
l

�
2p

N

�1/2

(2ps2)1/4 exp

�
2
1

4
s2k2

l

�
d(k2 k

l
) .

(13)

Here k is the wavenumber, N1/2 5 1/2(N2 1), kl 5
2pl/N, and

A
l
5

8>>>>><
>>>>>:

5A
Re
(0) if l5 0

5
1ffiffiffi
2

p A
Re
(l)1

iffiffiffi
2

p A
Im
(l) if l. 0

5A
2l
* if l, 0

, (14)

where i2 521 and ARe(l), AIm(l) are drawn from a

Gaussian distribution with zero mean and unit variance.

Then
�
F x(k)(k)

�
5 0, with h�i denoting the expectation

value, and hence the true model error mean hx(k)i5 0.

Furthermore, by theWiener–Khinchin theorem (Engelberg

2007) the power spectral density S(x(k)) is related to the

covariance function r as follows:

S(x(k))5
D		F x(k)

		2(k)E

5 �
N1/2

l52N1/2

2p

N
(2ps2)1/2 exp

�
2
1

2
s2k2

l

�
d(k2 k

l
)

5 F r(k) . (15)
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Taking the inverse Fourier transform of the right-hand side of (15) then shows that the true covariance of the

ensemble members created this way is

r(p, q)5
defh(x(k)p 2hx(k)p i)(x(k)q 2hx(k)q i)i

5 �
N

1/2

l52N
1/2

2p

N
(2ps2)1/2 exp

�
2
1

2
s2k2

l

�
F 21[d(k2 k

l
)][d(p, q)]

5 �
N

1/2

l52N
1/2

2p

N

s

(2p)1/2
exp

�
2
1

2
s2k2

l

�
exp[ik

l
d(p,q)]

’

ð‘
2‘

s

(2p)1/2
exp

�
2
1

2
s2k2

l

�
exp[ikd(p, q)]dk5 exp

"
2
1

2

d(p,q)2

s2

#
, (16)

where d(p, q) is the (dimensionless) distance between

the grid points p and q and the integral approximation

in the last line of (16) holds if 2ps/N � 1 (necessary to

replace the sum with an integral) and ps � 1 (nec-

essary to allow extension of the integral boundaries

to 6‘).

a. Convergence (dependence on MMC)

Decrease in MMC lowers computation cost, but is ex-

pected to increase the sampling error in BMC. In this

subsection we consider the dependence of the relative

error kBmv2BfullvkkBfullvk21 on MMC for typical vec-

tors v. As inversion in (12) is performed using an itera-

tive method (e.g., conjugate gradient), B is repeatedly

applied to vectors of the form MTHTr where r is the re-

sidual. In 4DVAR it is assumed that r follows aGaussian

distribution with covariance HMBMTHT 1R and zero

mean (Bennett 1992) and hence under these assump-

tions MTHTr itself follows a Gaussian distribution with

covariance MTHT(HMBMTHT 1R)HM and zero mean.

In this paper we will neglect the implementation-

dependent intricacies contained in M, H, and R and

simply construct the typical vectors v by drawing them

from a Gaussian distribution with zero mean and with

the identity matrix as covariance.

The relative error introduced by the Monte Carlo

approximation has been calculated for different values

of MMC. In our base experiment LMC 5 101, where LMC

is the maximum number of grid points in the support of

the N-dimensional vectors x(m). We draw a 10-member

ensemble (K5 10) with covariance (16), anN-dimensional

vector v from a standard normal distribution, and calcu-

late the relative error kBmv2BfullvkkBfullvk21. This

procedure is repeated 1000 times. The mean of the rela-

tive error is shown in Fig. 2 as a solid black line. A non-

linear least squares fit to the average relative error finds

that it scales as ;M20:51
MC , close to the ;M21/2

MC expected

for a Monte Carlo approximation (Geyer 1992).

The same experiment has been repeated using K5 5

and K5 20 and the results are also shown in Fig. 2. Non-

linear fits to these lines show that they have similar;M20:5
MC

dependence onMMC, but that for K5 5 the relative error

is 25%6 2% larger than for the case K5 10, while for

the case K5 20 the relative error is 26%6 1% smaller.

The relation between the mean relative error on one

hand and K and MMC on the other hand is further

explored in Fig. 3. For (K, MMC) 2 f5, 10, . . . , 50g3
f10, 20, . . . , 100, 150, . . . , 500, 600, . . . , 1000g the rela-

tive error kBmv2BfullvkkBfullvk21 is calculated for 1000

realizations and then averaged. Each of these aver-

ages is represented by one of the 103 235 230 dots in

Fig. 3. This figure shows that the relative error scales

with ;M20:5
MC if K is kept fixed. However, it also shows

that themean relative error can be bounded by a function

proportional to (KMMC)
20:5. As K becomes smaller the

mean relative error attains values below the upper

bound. This can be explained by the fact that mod-

ulated ensemble members created from the same raw

ensemble member are better approximations of each

other than modulated ensemble members created

from different raw ensemble members. For example,

vectors (x(k)2x)+x(m)+g and (x(k)2x)+x(m11)+g, where
m and m1 1 are neighboring points, are different in

at most two elements while (x(k)2x)+x(m)+g and

(x(k11)2x)+x(m)+g can be different in as many as LMC

elements. In all cases in this experiment a mean rel-

ative error of less than 0.1 is reached if KMMC $ 3500.

So far the elements of the vector v were drawn

from a normal distribution. If observations only cover

part of the domain, H will be sparse and it is possible

that the vector v’MTHTrmainly consists of zeros. To

test the effect of such a structure of v on aforemen-

tioned results, the previous experiment has been re-

peated using a 10-member ensemble (K5 10) with v

obtained by drawing from the distribution in (16) and

then randomly setting 90% of its elements to zero. The
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mean relative error still scales with ;M20:5
MC , but was

0.90 6 0.02 times the mean relative error found in

the previous experiment. So, in this 1D experiment

MC localization does not behave differently when r

is sparse.

b. Localization distance (LMC)

The goal of this subsection is to find LMC, the number

of grid points in the support of x(m), for which the

modulated ensemble covariance best approximates the

true covariance. For this purpose we have drawn a

20-member ensemble (K5 20) with covariance in (16),

used MC localization with MMC 5 150, thereby creating

an ensemble of 3000 modulated members, and calcu-

lated the covariance between the point in the center of

the domain and its neighboring points. This experiment

has been repeated 50 times for LMC 5 61, 101, 141. For

each choice of LMC, the mean value and standard de-

viation of these 50 trials are shown in Fig. 4 together

with the true covariance and the nonlocalized ensemble

covariance. The nonlocalized ensemble covariance

(Fig. 4a) does not tend to zero at large distances, but

exhibits spurious long distance covariances with a typi-

cal size of 0.2 (dashed lines). The MC localization is

successful at removing these spurious covariances. The

figure also shows that on average the width of the lo-

calized covariances is smaller than that of the true co-

variance. This narrowing is most pronounced for

LMC 5 61. It is less for LMC 5 141, but the larger stan-

dard deviations in the tails show that some of the mod-

ulated ensembles generated during the 50 trials have a

nonzero covariance where the true covariance is nearly

zero. This suggests that there is some optimal value

for LMC, hereafter referred to as L̂MC, for which the

root-mean-square (RMS) error between the true co-

variance as given in (16) and the localized ensemble

covariance is minimal. Repeating this experiment using

different values of s and LMC with KMMC 5 4000 shows

that this is indeed the case. The found values for L̂MC

are shown in Fig. 5. A linear fit to the data shows that

L̂MC 5 (3:66 0:2)s. In a similar experiment with fixed

KMMC 5 4000, but with different K similar linear re-

lations are found, but with different proportionality

constants. As Table 1 shows, the proportionality con-

stant remains between 3 and 4 for a small ensemble

(K# 30), but starts increasing when the number of raw

ensemble members increases. This is in agreement

with the increase in optimal localization scales ob-

served in Hamill et al. (2001) and Kirchgessner et al.

(2014). An experiment with K5 20 and MMC varying

between 100 and 400 gives proportionality coefficients

between 3.4 6 0.2 and 4.1 6 0.2 with no clear de-

pendence on MMC.

FIG. 3. Each dot represents the mean relative error

kBfullv2BMCvkkBfullvk21 over 1000 realizations ofBfull,BMC, and v

for a different value ofK andMMC. Colors show the size of the raw

ensemble K. The dashed line follows the relation 5:8(KMMC)
21/2.

FIG. 2. The relative error kBfullv2BMCvkkBfullvk21 as function

of MMC (the size of the sets Mk in the MC approximation) and

different choices of K (the number of raw ensemble members);

note that KMMC is the total number of modulated ensemble

members used. The solid line shows the mean relative error aver-

aged over 1000 different realizations of the raw ensemble, the

modulated ensemble, and the vector v. Error bars indicate the in-

terval around the mean in which 90% of the relative errors fall.
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c. Shape of covariance

The covariance function in (16) is positive. In reality

a negative background error covariance might be ex-

pected. For example, when the strength of the circulation

around an eddy varies in different ensemble members,

the background errors in a component of the horizontal

velocity field on different sides of the eddy will be nega-

tively correlated with each other. To test the effect ofMC

localization in this case, the foregoing experiment is re-

peated, but nowwith raw ensemblemembers constructed

using

F x(k)(k)5 �
N

1/2

l52N
1/2

(
A

l

�
2p

N

�1/2

(2ps2)1/4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
exp

�
2
1

2
(sk

l
2p)2

�
1

1

2
exp

�
2
1

2
(sk

l
1p)2

�s
d(k2 k

l
)

)
(17)

FIG. 4. The comparison of the true (gray) and ensemble-generated covariances (black) computed with respect to

the domain center point. (a) Mean (solid black line)6 standard deviation (dashed black lines) of 50 raw ensemble

covariances. (b) Mean (solid black line) 6 standard deviation (dashed black lines) of 50 modulated ensemble

covariances with compact support length LMC 5 61. (c) As in (b), but now LMC 5 101. (d) As in (b), but with

LMC 5 141.
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withAl as defined in (14). Following a similar procedure

as outlined for (15) and (16) this creates raw ensemble

members with a covariance function given by

r[d( p,q)]’ cos

�
d(p, q)p

s

�
exp

"
2
d(p, q)2

2s2

#
. (18)

Figure 6 shows that with a localization width LMC 5 101

the mean of the localized covariances follows the true

covariance. However, the negative covariances are not

as strong as in the true covariance or in the nonlocalized

sample covariance. As the distance between grid point p

and grid point q becomes larger there will be fewer

modulated ensemble members that have both points

lying in their support. Hence, as d(p, q) becomes larger

there will be fewer and fewer terms in (4) for which the

(p, q)th element is nonzero. Consequently (BMC)pq will

go to zero as well. Although on average the localized

covariances are positive for x5650, just as the true

covariance, Fig. 6 shows that a fraction of localized co-

variances constructed in this experiment had the wrong

sign at this x. This is, however, not unique to localization,

as the same happens for a fraction of the nonlocalized

ensemble covariances.

d. Spectrum

When Bfull is calculated, g+x(m) is a boxcar function

when grid point m lies farther than LMC from the do-

main boundary. As is shown in the appendix, the am-

plitude of its Fourier transform then scales with a sinc

function with a main lobe half-width proportional to

L21
MC. The Fourier transform of the modulated ensem-

ble member is a convolution of this function and the

Fourier transform of the raw ensemble member. Con-

sequently, the Fourier transform of the modulated

ensemble member is a smoothened version of that of

the raw ensemble member.

When the support ofx(m) contains part of the boundary

of the domain or when elements g vary because of the

MC approximation, see (6), obtaining the spectrum is not

as straightforward. To study the spectrum for this case,

10-member ensembles were drawn and localized using

MC localization with LMC 5 101 and MMC5 400. Using

the MATLAB periodogram routine, the one-sided

power spectrum of the nonlocalized and modulated

ensemble members was obtained. These steps were

repeated 50 times creating 500 nonlocalized and 500

localized spectra.

The ensemble variance for element p is given by

1/(K2 1)�K

k51�m2Mk
(x(k)2x)

2

pg
2
p(x

(m)
p )2, where g in (2)

and (6) was chosen such that the variance in the lo-

calized ensemble for element p is exactly (in the case of

Bfull) or approximately (in the case of BMC) equal to the

variance of the raw ensemble. For the raw ensemble

K ensemble members contribute to the sum that gives the

ensemble variance for element p, while for the modulated

ensemble �K

k51�m2Mk
x(m)
p 5g22

p K members contribute.

As usually g22
p . 1 this means that each modulated en-

semblemembers contributes less to the variance than each

raw ensemblemember.As the total spectral power is equal

to the variance (Oppenheim and Schafer 1989) this im-

plies that the power spectral density of the modulated

ensemble members has to be smaller than that of the

raw ensemble members. To facilitate the comparison

of the power spectra on the same scale, the afore-

mentioned 500 localized power spectra have been

rescaled by multiplying them with the average ratio of

number of modulated members that contribute to the

variance over the number raw ensemble members

that contribute (i.e., by 1/N�N

p51g
22
p ).

The (scaled) mean power spectral density from the 500

selected members as well the 5% and 95% percentiles are

FIG. 5. The relation between s as appearing in (16) and the value

for LMC for which the RMS error between the true covariance and

the localized ensemble covariance is minimal. The dashed line

shows the linear fit to the data.

TABLE 1. Proportionality constant a (6 standard deviation) between L̂MC and s as function of the number of raw ensemble membersK.

K 10 15 20 25 30 40 50

a 3:26 0:2 3:26 0:14 3:66 0:2 4:16 0:3 3:76 0:2 4:96 0:3 4:46 0:2
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shown in Fig. 7 together with the true spectrum from (15)

as a function of thewavenumberk. Comparing the averages

in the figure shows that the localization scheme suppresses

the power spectral density for wavenumbers smaller than

k, 0:14 (i.e., wavenumbers corresponding to wave lengths

longer than 45, or 1/2LMC in our case, by at most 93%).

5. Example from a 3D model

The experiments in section 4 were all performed on a

1D grid. We have implemented MC localization in our

3D coastal ocean forecasting model described in sec-

tion 1 using an ensemble size of K5 50 and KMMC 5
750 000 modulated ensemble members. We use the first

baroclinic Rossby radius of deformation, which is

;20 km for the model region (Chelton et al. 1998), as

an estimate for s. This, in combination with values for

a for large ensembles as found in Table 1 has let us to

set LMC 5 100 km in our model. Figure 8 shows an ex-

ample of the surface temperature-salinity background

error covariance in this model. As perturbations in the

flow field alter the advection of river water and as

the river outflow is generally fresher and warmer than

the ocean this temperature covariance is expected to be

negative in and near the river plume. The figure shows

that without localization the covariances with the

largest magnitude can be found in the areas marked as

1, 2, and 3. For both the shown and an independently

generated 50-member ensemble, the p values of the

temperature-salinity correlations have been calculated

using MATLAB’s corrcoef routine. The area within the

dashed lines shows where correlations were significantly

FIG. 6. As in Fig. 4, but now using ensemble members having (18) as true covariance function.
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different from zero at the 90%-confidence level in both

ensembles. Apart from a small patch, the covariances in

areas 2 and 3 are nonsignificant and MC localization re-

moves them successfully, while it maintains the nonzero,

negative covariances in area 1 that are significant.

6. Summary and conclusions

Ensemble estimates of the background model er-

ror covariance contain spurious long-distance cor-

relations that can degrade the performance of data

assimilation algorithms. For our 4DVAR data as-

similation system we sought a method to remove these

correlations and that is computationally more efficient

than popular localization methods like taking the

Schur product of the ensemble sample covariance with

C generated by Gaspari and Cohn (1999) or the al-

gorithm outlined by Bishop and Hodyss (2011). With

this aim we introduced MC localization, which re-

writes the localized background error covariance as

the sample covariance of a modulated (truncated)

ensemble, in which the modulated ensemble members

are created by selecting parts of size L from raw

ensemble members. The order estimates of the com-

putational cost show that MC localization is compu-

tationally more efficient than using C generated by

Gaspari and Cohn (1999). Whether MC localization is

computationally more efficient than using Bishop and

Hodyss (2011) depends on the details of the im-

plementation used. In particular, computationally efficient

MC localization requires that the number of modulated

ensemble members that is used in the calculation of the

localized background covariance is small. From a test on a

1D grid with 1000 grid points and a background error co-

variance shaped as a Gaussian it was found that for this

case a MC approximation of the localized background

covariance can be created using only a limited number

of modulated ensemble members. For the case studied

we found that the mean relative error introduced by this

MC approximation has an upper bound that scales as

;(KMMC)
21/2, where K is the number of raw ensemble

members andMMC is the number of modulated ensemble

members created out of each raw ensemble member. Us-

ing this approximation MC localization was successful in

removing spurious long-distance covariances in the 1D

model as well as in the 3D example.

For our 1D case, we found that the optimal localization

width LMC increases with increasing length scale of the

background errors. This relation qualitatively agrees with

the findings by Houtekamer and Mitchell (2001). They

calculated RMS errors for their ensemble Kalman filter

data assimilation system in which localization is performed

by taking the Schur product with C generated by Gaspari

and Cohn (1999) and found that the localization radius for

which this error is minimal increases with increasing

number of ensemble members. They attributed this to

larger distance over which covariances can be computed

accurately (Houtekamer and Mitchell 1998). The more

accurate computation is possible because the small corre-

lations found between points spaced far apart become

distinguishable as the statistical noise level drops with in-

creasing number of ensemble members.

The rescaled power spectrum of the modulated en-

semble members was found to be a smoothened version

of the spectrum of the nonlocalized ensemble members.

In particular, the rescaled power spectrum for the

modulated ensemble members contains relatively more

power for large wavenumbers, while for small wave-

numbers spectral power is strongly reduced compared to

the nonlocalized spectrum. This smoothing was shown

to be due to the fact that the Fourier transform of most

modulated ensemble members is a convolution of the

Fourier transform of the nonlocalized ensemble mem-

ber with a function that scales with the sinc function. In

this sense the effect of localization on the spectrum of

the ensemblemembers is found to be comparable to that

of windowing. This suggests that in future research it

might be interesting to study the effects of varying the

strength of the smoothing by using functions other than

the boxcar for x(m).

FIG. 7. Power spectral density as a function of the wavenumber

k for raw ensemble members (black) and for the modulated en-

semblemembers withLMC 5 101 andMMC 5 400 (gray). Solid lines

show the power spectral density averaged over 500 ensemble

members. Dashed lines show the 5% and 95% percentiles. The

power spectrum of raw ensemble members as given by (15) is

shown as a line of stars.
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A well-known drawback of the use of localization

schemes in data assimilation is their tendency to generate

corrections in which the flow is not in geostrophic balance

(Mitchell et al. 2002; Lorenc 2003). Though not addressed

in this paper, MC localization is expected to produce

unbalanced corrections: even if the ensemble perturba-

tions x(k)2x are in geostrophic balance, a modulated en-

semble member will contain a discontinuity in pressure

near the boundary of the boxcar function with no geo-

strophic velocity to match it. Ways to mitigate the im-

balance, like using smoother functions for x(m) should be

addressed in future work.

Another possible topic for future research is the use of

multiple localization scales in MC localization. In this

paper x(m) was assumed to be independent of index m

marking the location of the support (i.e., the localization

distance was assumed to be homogeneous in space).

Several inhomogeneous localization schemes have been

developed in which C is derived from the ensemble

(Bishop and Hodyss 2007, 2009a, 2011). It was found

that at least in simple systems in which the scale of the

error changes in space and in time these schemes out-

perform nonadaptive localization. Contrary to Bishop

and Hodyss (2007) and Bishop and Hodyss (2009a), MC

localization does not provide a way to estimate the

correlation length scale. However, when local estimates

of correlation scales are available, inhomogeneity is

expected to be easily implementable in MC localization

by making LMC a function of m.
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APPENDIX

Fourier Transform of the Modulated Ensemble
Members

As in section 4 consider a uniform grid with

spatial coordinate j and grid spacing dj. To sim-

plify the derivation of the Fourier transform of

the modulated ensemble member x(k)+x(m)+g we

extend x(m), g to all j 2 R by defining functions

FIG. 8. Ensemble covariance (in 1023 8C) at 0000 UTC 4 May 2011 between the sea surface temperature at the

location marked by the dot and the sea surface salinity field in the Columbia River plume (black line is 31.5 psu).

(a) For a nonlocalized 50-member ensemble. (b) For the same 50-member ensemble but now usingMC localization

withMMC5 15 000 andLMC 5 51 in both zonal andmeridional direction corresponding to a localization distance of

100 km. In the area enclosed by the dashed lines the nonlocalized sample correlation is significantly different from

zero at the 90% level. The 200-, 1000-, and 2000-m isobaths are shown as gray lines.

4554 MONTHLY WEATHER REV IEW VOLUME 145

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 03:57 PM UTC



x(m)(j), g(j) with x(m)(j)5 1 if jj2 jmj# 1/2LMC,

g(j)5
h
1/K�K

k51�m2Mx(m)(j)2
i21/2

5
h
�M

m51x
(m)(j)2

i21/2
.

Then x(m)(jp)5x(m)
p and g(jp)5gp.

If jj 2 j1j, jj 2 jN j $ 1/2LMC then there are

bLMC/djc1 1 points for which jj2 jpj, 1/2LMC

with b c as the floor function. Hence, g(j) 5
(bLMC/djc1 1)21/25

def
cg for such j. If m is such

that jjm 2 j1j, jjm 2 jN j . LMC x(m)(j) 5 0 if

jj 2 j1j, jj 2 jN j, 1/2LMC and hence x(m)(j)g(j) 5
cgx

(m)(j) for such m. In this case the Fourier transform

of x(m)+g is given by

F (x(m)+g)(k)5

ð
R

c
g
x(m)(j)exp(2ikj)dj5 c

g

ðjm11/2LMC

jm21/2LMC

exp(2ikj)dj

5 c
g
exp(2ikj

m
)
exp(2ikj)

2ik

				
1/2LMC

j521/2LMC

5 c
g
L

MC
exp(2ikj

m
)sinc

�
1

2
L

MC
k

�
. (A1)

Provided the integrals exist the Fourier transform of the modulated ensemble member x(k)(j) then follows from

the convolution theorem:

F (x(k)+x(m)+g)(k)5

ð
R

x(k)(j)(x(m)+g)(j) exp(2ikj) dj

5

ð
R

x(k)(j)

�
1

2p

ð
R

F (x(m)+g)(k0) exp(ik0j)dk0
�
exp(2ikj) dj

5
1

2p

ðð
R
2

x(k)(j) exp[2i(k2 k0)j]F (x(m)+g)(k0) dj dk0

5
1

2p

ð
R

F x(k)(k2 k0)F (x(m)+g)(k0) dk0 5
1

2p
F x(k)*F (x(m)+g)(k) . (A2)

Here the last line of (A2) shows that the Fourier trans-

form of the modulated ensemble member x(k)+x(m)+g
at the wavenumber k is a weighted combination of

values of the Fourier transform at nearby wave-

numbers k2k0 where the amplitude of the nearby

Fourier component is scaled with sinc(1/2LMCk
0) and

the phase is shifted by k0jm. Notice that for x(k) con-

structed using (13) or (17), F x(k) consists of a finite

number of delta functions and hence the integrals in

(A2) will be properly defined. In (A2) and (A5) the

asterisk indicates convolution.

On a discrete grid the value of the modulated en-

semble member is only sampled on the grid points and

hence the discrete modulated ensemble member can be

written as x(k)+x(m)+g+III(j) with

III
dj
(j)5 �

‘

l52‘
d(j2 ldj) , (A3)

with the Dirac Comb or sampling function, which has

Fourier transform (Strichartz 1994)

F III
dj
(k)5

2p

dj
III2p

dj
(k)5

2p

dj
�
‘

l52‘
d(k2 lk

sample
) .

(A4)

Here ksample 5 2p/dj is the sampling wavenumber. Now,

using once again the convolution theorem the Fourier

transform of the discrete modulated ensemble member

becomes

F (x(k)+x(m)+g+III
dj
)(k)5

1

2p
F (x(k)+x(m)+g)*F III

dj
(k)

5
1

dj
�
‘

l52‘

ð‘
2‘

F (x(k)+x(m)+g)(k0)d(k2 lk
sample

2k0) dk0

5
1

dj
�
‘

l52‘
F (x(k)+x(m)+g)(k2 lk

sample
)

5
c
g
L

MC

2pdj

ð‘
2‘

�
�
‘

l52‘
F x(k)(k2 k02 lk

sample
)

�
exp(2ik0j

m
)sinc

�
1

2
L

MC
k0
�
dk0 . (A5)
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Comparison of (A2) and (A5) shows that discretization

gives rise to aliasing: F x(k)(k2 k0) has been replaced

by�‘
l52‘F x(k)(k2 k0 2 lksample). Consequently, for the

discrete modulated ensemble member the Fourier

transform at wavenumber k is a weighted combination

dominated by Fourier components with wavenumbers

close to k and wavenumbers differing from k by a mul-

tiple of ksample. In particular, if x(k) is generated using

(13) or (17) the discrete modulated ensemble member

also has nonzero Fourier components for jkj. jk6N
1/2
j.

As a consequence, Fourier components of the discrete

modulated ensemble member for k; kN
1/2

(k;k2N
1/2
)

are not only combinations of the Fourier components of

x(k) with wavenumbers near &kN
1/2

(*k2N
1/2
), but also

with wavenumbers near k2N
1/2

(kN
1/2
).
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